How to optimize cybersecurity control decisions when supporting data is scarce

Robert D. Brown III Cybersecurity Risk Management Leader Resilience Insurance

Introduction

Robert Brown

- 25+ year career as a decision & risk analysis advisor across multiple commercial verticals
- Past RAW contributor
 - 2019 Value of information on continuous variables
 - 2020 Bayesian method for judging the likely scenario in a defined set that is unfolding
 - 2021 Measuring the value of carbon (\$/tonne) and its effect on selecting green initiatives
- Author of Business Case Analysis with R Simulation Tutorials to Support Complex Business Decisions (Springer-Nature/Apress, 2018)
- Joined Resilience Insurance in May 2022, reporting to Richard Seiersen, co-author of • How to Measure Anything in Cybersecurity Risk (Wiley, 2016) and The Metrics Manifesto (Wiley, 2022)

Cybersecurity requires balancing multiple business concerns

Security and Operational Resilience

Alternate Responsible Uses of Capital

Varying Information Quality

Competing Values and Preferences

Probabilities don't exist, but they do matter

- Probabilities are analogous to discount rate in discounted cash flow analysis, which allows us to compare alternate choices of cash flows in time.
- Probabilities are the mental tool we use to compare alternate choices of games of chance that yield different payoffs if they materialize.

How does this apply to cybersecurity (e.g., ransomware)?

- Optimization goal: choose the control state that minimizes the expected value of material ransomware event losses.
- Loss Severity and Cost of Control State (i.e., configuration) might be uncertain, but are reasonably bounded and assessed by SMEs directly.
- states.

- Probability that a ransomware event results in a
- material loss given a Control State is a little more
- difficult to assess across the multiple levels of control

Probability of the ransomware event is the connective tissue between the investment decision and the desired payoff.

The alchemy of probabilities

Actuarial Tables

Subject Matter Experts

Formalized and peer reviewed empirical data

People who possess fine-grained understanding of causal factors

Bookies

People who aggregate and synthesize information to set odds

On the care and feeding of your SMEs

Iteratively Calibrate

Keep a Running Score

Employ Best for Real Assessments

Calibrate and Score

Iteratively Calibrate

Question

Probability Statement is True

The Brier Score

Keep a Running Score

Database of Assessments and Scores

^	forecast 🗘 🗘	outcome 🗘	sqr_error 🗘
1	0.75	1	0.0625
2	0.61	0	0.3721
3	0.56	1	0.1936
4	0.60	1	0.1600
5	0.68	1	0.1024
6	0.38	1	0.3844
7	0.68	1	0.1024
8	0.27	1	0.5329
9	0.68	1	0.1024
10	0.43	1	0.3249
11	0.85	0	0.7225
12	0.71	0	0.5041
13	0.69	1	0.0961
14	0.56	0	0.3136
15	0.71	1	0.0841

- Developed by Glenn Brier, a meteorologist, to provide feedback to improve quality of weather forecasts.
- A strictly proper scoring rule that measures the accuracy of probabilistic predictions.
- Equivalent to the mean squared error as applied to predicted probabilities.

$$BS = \frac{1}{N} \sum_{k=1}^{N} (f_k - o_k)^2$$

https://docs.lib.noaa.gov/rescue/mwr/078/mwr-078-01-0001.pdf

Perform virtual experiments with the calibrated SMEs

Employ Best for Real Assessments

- We calibrate on verifiable but difficult questions, then apply the thinking process to very difficult to verify judgments.
- Egon Brunswick lens model means to reverse engineer how SMEs perceive their environment on the basis of observed cues correlated to outcomes they judge.
- Combine all SMEs' "data"
- Regress response ~ control levels

Reverse engineering the SME brain – a ransomware model example

- **Our Goal: Discover the value of security controls**
- We review about 10-50 control states \bullet
- Each state is composed of different control levels across seven \bullet control type
- SMEs assess the probability of a material event for each state \bullet
- We score the SMEs for noise: consistency and discrimination lacksquare
- We combine the SMEs' assessments into a database
- **The Result:** A probability model for ~650+ control combinations

The conceptual ransomware system model sets the context

FUNCTIONS CONTROLS LEVELS

Security Controls – Probability of Material Event Assessment

	User C	Controls	System (Controls	Trust C	ontrols	Backup Controls	Likel	ihoods	
	Security Training	Email Security	Vulnerability Patch Sla	Endpoint Protection	Identity Verification	Network Segmentation	Backup Security	P(Ransomware), 1 yr	Year 3	Year 5
1	UNMANAGED: No Training	UNMANAGED: No Controls	UNMANAGED: Adhoc Patch	UNMANAGED: No Controls	UNMANAGED: No Controls	UNMANAGED: Ext Firewall	UNMANAGED: No Backups	+4.00%	+11.50%	+18.50%
2	MANAGED: Attack Simulations	DEPLOYED: Email Security Gateway & Email Auth	UNMANAGED: Adhoc Patch	DEPLOYED: EPP	DEPLOYED: MFA	DEPLOYED: Users Segmented	DEPLOYED: Backups			
3	UNMANAGED: No Training	UNMANAGED: No Controls	MANAGED: 30 Days Patch Critical	UNMANAGED: No Controls	UNMANAGED: No Controls	MANAGED: Micro- Segmentation	MANAGED: Tested Backups			
4	UNMANAGED: No Training	UNMANAGED: No Controls	MANAGED: 30 Days Patch Critical	MANAGED: EPP & EDR	UNMANAGED: No Controls	MANAGED: Micro- Segmentation	UNMANAGED: No Backups			
5	UNMANAGED: No Training	DEPLOYED: Email Security Gateway & Email Auth	UNMANAGED: Adhoc Patch	DEPLOYED: EPP	UNMANAGED: No Controls	DEPLOYED: Users Segmented	UNMANAGED: No Backups			

- We set a baseline annual probability based on claims data and other firmographic data ~ 2.5%.
- Well calibrated SMEs assess how the baseline updates based on control combinations.
- We present 10-50 control states at a time chosen to span the full set of combinations after several SMEs
 provide input over several sets.

Combine all SME judgements to "recreate Giambi"

	USER CONTROLS		COMPUTE CONTROLS		TRUST CONTROLS		
Security_Training	Email_Security	Vulnerability_Patch_SLA	Endpoint_Protection	Identity_Verification	Network_Segmentation	Backup_Security	Annual_Prob
UNMANAGED:No Training	DEPLOYED:Email Security Gateway & Email Auth	MANAGED:30 Days Patch CRITCAL	MANAGED:EPP & EDR	MANAGED:MFA & PAM	DEPLOYED:Users Segmented	DEPLOYED:Backups	1.90%
MANAGED:Attack Simulations	DEPLOYED:Email Security Gateway & Email Auth	UNMANAGED:Adhoc Patch	UNMANAGED:No Controls	UNMANAGED:No Controls	MANAGED:Micro-Segmentation	UNMANAGED:No Backups	3.90%
UNMANAGED:No Training	DEPLOYED:Email Security Gateway & Email Auth	UNMANAGED:Adhoc Patch	DEPLOYED:EPP	DEPLOYED:MFA	DEPLOYED:Users Segmented	UNMANAGED:No Backups	2.40%
UNMANAGED:No Training	UNMANAGED:No Controls	MANAGED:30 Days Patch CRITCAL	DEPLOYED:EPP	UNMANAGED:No Controls	UNMANAGED:Ext Firewall	MANAGED:Tested Backups	2.80%
UNMANAGED:No Training	DEPLOYED:Email Security Gateway & Email Auth	MANAGED:30 Days Patch CRITCAL	UNMANAGED:No Controls	UNMANAGED:No Controls	DEPLOYED:Users Segmented	MANAGED:Tested Backups	2.65%
MANAGED:Attack Simulations	UNMANAGED:No Controls	UNMANAGED:Adhoc Patch	MANAGED:EPP & EDR	UNMANAGED:No Controls	UNMANAGED:Ext Firewall	MANAGED:Tested Backups	2.70%
UNMANAGED:No Training	UNMANAGED:No Controls	UNMANAGED:Adhoc Patch	MANAGED:EPP & EDR	DEPLOYED:MFA	MANAGED:Micro-Segmentation	UNMANAGED:No Backups	2.40%
UNMANAGED:No Training	DEPLOYED:Email Security Gateway & Email Auth	UNMANAGED:Adhoc Patch	MANAGED:EPP & EDR	DEPLOYED:MFA	MANAGED:Micro-Segmentation	MANAGED:Tested Backups	2.10%
MANAGED:Attack Simulations	UNMANAGED:No Controls	UNMANAGED:Adhoc Patch	DEPLOYED:EPP	UNMANAGED:No Controls	DEPLOYED:Users Segmented	UNMANAGED:No Backups	2.95%
UNMANAGED:No Training	DEPLOYED:Email Security Gateway & Email Auth	UNMANAGED:Adhoc Patch	MANAGED:EPP & EDR	DEPLOYED:MFA	MANAGED:Micro-Segmentation	UNMANAGED:No Backups	2.80%
MANAGED:Attack Simulations	UNMANAGED:No Controls	UNMANAGED:Adhoc Patch	MANAGED:EPP & EDR	DEPLOYED:MFA	UNMANAGED:Ext Firewall	UNMANAGED:No Backups	2.90%
MANAGED:Attack Simulations	DEPLOYED:Email Security Gateway & Email Auth	UNMANAGED:Adhoc Patch	MANAGED:EPP & EDR	DEPLOYED:MFA	MANAGED:Micro-Segmentation	UNMANAGED:No Backups	2.35%

Guys, you're still trying to replace Giambi. I told you we can't do it...Now what we might be able to do is recreate him. We create him in the adding field.

Billy Beane, former gene Moneyball (2011).

Billy Beane, former general manager of the Oakland Athletics, as featured in the movie

Transform the event probability assessments into numerical levels and regress to linear coefficients

Security_Training	Email_Security	Vulnerability_Patch_SLA	Endpoint_Protection	Identity_Verification	Network_Segmentation	Backup_Security	
UNMANAGED:No Training	UNMANAGED:No Controls	UNMANAGED:Adhoc Patch	UNMANAGED:No Controls	UNMANAGED:No Controls	UNMANAGED:Ext Firewall	UNMANAGED:No Backups	1
MANAGED:Attack Simulations	DEPLOYED:Email Security Gateway & Email Auth	MANAGED:30 Days Patch CRITCAL	DEPLOYED:EPP	DEPLOYED:MFA	DEPLOYED:Users Segmented	DEPLOYED:Backups	2
			MANAGED:EPP & EDR	MANAGED:MFA & PAM	MANAGED:Micro-Segmentation	MANAGED:Tested Backups	3

Security_Training	Email_Security	Vulnerability_Patch_SLA	Endpoint_Protection	Identity_Verification	Network_Segmentation	Backup_Security	Annual_Prob
1	2	2	3	3	2	2	1.90%
2	2	1	1	1	3	1	3.90%
1	2	1	2	2	2	1	2.40%
1	1	2	2	1	1	3	2.80%
1	2	2	1	1	2	3	2.65%
2	1	1	3	1	1	3	2.70%
1	1	1	3	2	3	1	2.40%
1	2	1	3	2	3	3	2.10%
2	1	1	2	1	2	1	2.95%
1	2	1	3	2	3	1	2.80%
2	1	1	3	2	1	1	2.90%
2	2	1	3	2	3	1	2.35%
1	2	1	1	1	2	2	3.65%

Multi-linear regression on control levels yields coefficients

	Coefficients
Intercept	0.0708
Security_Training	-0.0032
Email_Security	-0.0043
Vulnerability_Patch_SLA	-0.0047
Endpoint_Protection	-0.0037
Identity_Verification	-0.0038
Network_Segmentation	-0.0023
Backup_Security	-0.0020

Setting control levels by their ordinal designation lets us predict the probability of material events in further risk analysis

	Coefficients
Intercept	0.0708
Security_Training	-0.0032
Email_Security	-0.0043
Vulnerability_Patch_SLA	-0.0047
Endpoint_Protection	-0.0037
Identity_Verification	-0.0038
Network_Segmentation	-0.0023
Backup_Security	-0.0020

Annual Probability of Ransomware Event

Cybersecurity requires balancing multiple business concerns

Security and Operational Resilience

Optimize across control alternatives

Alternate Responsible Uses of Capital

Include in portfolio discussion of all capital allocations

Thank you!

- Be sure to download the Excel Ransomware model.
- Reach out for questions or open office hours to go over the Excel model.

nodel. to go over the Excel model.